Use of the Two Enantiometers of 7,7-Dimethylbicyclo[3.2.0]hept-2-en-6-one to form Complementary Optically Active Synthons in a Convergent Synthesis of Leukotriene- B_{4}

Ian C. Cotterill, ${ }^{\boldsymbol{a}}$ Rabih Jaouhari, ${ }^{\boldsymbol{b}}$ György Dorman, ${ }^{\text {c }}$ Stanley M. Roberts, ${ }^{\boldsymbol{a}}$ Feodor Scheinmann ${ }^{\boldsymbol{b}}$ and Basil J. Wakefield ${ }^{c}$
${ }^{a}$ Department of Chemistry, Exeter University, Exeter, Devon EX4 4OD, UK
${ }^{b}$ Salford Ultrafine Chemicals and Research Ltd., Enterprise House, Manchester Science Park, Lloyd St. North, Manchester M15 4EN, UK
${ }^{c}$ Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, UK

The acetate $(\pm)-4$ was resolved by an enantioselective hydrolysis catalysed by porcine pancreatic lipase. The resultant alcohol (-)-3 and the optically active ester $(+)-4$ were converted into the ketones $(+)-2$ and (-)-2 respectively. The ketone $(+)-2$ was elaborated to produce the diester 9 while the ketone (-)-2 was transformed into the phosphonium salt 21. A Wittig reaction between 9 and 21, followed by deprotection and chromatography furnished leukotriene- B_{4}.

Leukotriene $-B_{4} 1$ is a naturally occurring compound with extremely interesting biological properties. It is a chemotactic and chemokinetic agent: the ability of leukotrienes-B to sequester macrophages has led to the implication of these molecules in various types of inflammation including psoriasis, rheumatoid arthritis, vasculitis and irritable bowel syndrome. ${ }^{1}$ The synthesis of leukotriene- B_{4} by B-lymphocytes has led to speculation that the compound may play a role in the activation and differentiation of these cells. ${ }^{2}$ Leukotriene- B_{4} may play a significant part in the development of pulmonary failure in critically ill patients ${ }^{3}$ and also in the pathogenesis of head and neck cancer. ${ }^{4}$

The biological importance of leukotrienes has attracted the attention of synthetic organic chemists and medicinal chemists. Syntheses of the natural products have been developed ${ }^{5}$ and some of these routes have been exploited for the preparation of leukotriene-B antagonists, agents that are being closely scrutinized in a number of laboratories. ${ }^{6}$ Two chiral synthons \mathbf{A} and \mathbf{B} are recognised components of a convergent synthesis and we now show that these two synthons can be prepared from the two enantiomers of the ketone 2 (Fig. 1).

Results and Discussion

(\pm)-Dimethylbicyclo[3.2.0]hept-2-en-6-one 2 is prepared by $[2+2]$ cycloaddition of dimethylketene and cyclopentadiene. ${ }^{8}$ Reduction using lithium aluminium hydride and aluminium chloride gave a high yield of the thermodynamically preferred exo-alcohol 3 (Scheme 1). Acetylation gave the ester 4. Treatment of the racemic ester with crude porcine pancreatic lipase in pH 8 buffer resulted in a highly enantioselective hydrolysis giving the alcohol $(-)-3$ and ester $(+)-4$. These two optically active compounds were readily separated by chromatography over silica and were converted, independently, into the two enantiomers of the ketone 2.

Oxidation of the dextrorotatory ketone (+)-2 with metachloroperoxybenzoic acid gave the epoxide 5 (64%) (Scheme 2) and this epoxide was transformed into the lactone 6 in 35% overall yield. Treatment of the lactone 6 with ethanol containing potassium carbonate afforded the ester 7 which was benzoylated to give the diester $8(72 \%$ yield from the lactone 6). Ozonolysis of the alkene 8 produced the required aldehyde 9 $(70 \%)[\alpha]_{\mathrm{D}}^{26}-32\left(c \quad 0.5 \mathrm{CHCl}_{3}\right)\left[\begin{array}{lll}1 \mathrm{t} .,{ }^{9} & {[\alpha]_{\mathrm{D}}-32.8(c} & 0.5\end{array}\right.$ $\left.\left.\mathrm{CHCl}_{3}\right)\right]$.

It is noteworthy that the ketone $(-)-2$ can also be con-

Fig. 1
verted into the aldehyde 9 using a different set of reaction conditions. ${ }^{9}$.

Bromination of the laevorotatory ketone (-)-2 in aqueous acetone furnished the bromohydrin 10 (Scheme 3). Debromination and photolysis provided the lactone 11: the tricyclic compound 12 was also obtained from the photolysis reaction. Controlled reduction of the lactone 11 using diisobutylaluminium hydride furnished the lactols 13 which were protected as the silyl ethers 14. Ozonolysis and a Wittig reaction afforded the protected lactols 15. Reaction of the masked carbonyl group within the lactols derived from 15 with ethanedithiol and reaction of the hydroxydithiolane with tertbutyldimethylsilyl triflate gave the fully protected material 16 from which the required aldehyde 17 was obtained using mercury(iI) chloride, methyl iodide and cadmium carbonate. Chain extension of the aldehyde 17 by two carbon atoms with concomitant incorporation of a diene moiety was neatly

Scheme 1 Reagents: i, $\mathrm{LiAlH}_{4}, \mathrm{AlCl}_{3}$, ether, heat, 1 h ; ii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 4-dimethylaminopyridine, room temp., 18 h ; iii, porcine pancreatic lipase, $\mathrm{H}_{2} \mathrm{O}$, room temp., 84 h ; iv, LiAlH_{4}, ether, 8 h , room temp.; v, $\mathrm{Me}_{2} \mathrm{SO},(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 15 \mathrm{~min},-70^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}$, $-70^{\circ} \mathrm{C} \longrightarrow$ room temp.

Scheme 2 Reagents: i, MCPBA; ii, $\mathrm{HI}, \mathrm{H}_{2} \mathrm{O}$; iii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene; iv, hv, benzene; v, $\mathrm{EtOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$; vi, PhCOCl , base; vii, O_{3} then $\mathrm{Me}_{2} \mathrm{~S}$
accomplished using methyl 4-chlorophenylsulphinylacetate and base, benzoylation (to give the diester 18), and a palladium(0) catalysed elimination reaction ${ }^{7}$ to produce the ester 19.

The synthesis of leukotriene- B_{4} was completed using procedures similar to those prescribed in the literature. ${ }^{5}$ Thus the ester 19 was reduced to the corresponding alcohol using aluminium hydride ${ }^{10}$ and this alcohol was transformed into the bromide 20 through reaction with carbon tetrabromide and triphenylphosphine. The phosphonium salt 21 was prepared and deprotonated, and the aldehyde 9 was added. The requisite coupling took place in good yield (65%) to produce the protected leukotriene 22 and the ($6 E$)-isomer in the ratio 2:1. Deprotection using fluoride ion and potassium carbonate in aqueous methanol followed by HPLC (employing a reverse phase column and acetic acid in aqueous methanol as eluent) gave leukotriene- $\mathrm{B}_{4} \mathbf{1}$ identical by spectroscopy and chromatography to an authentic sample.

Conclusions

The bicyclic ketones (+)-2 and (-)-2 are readily obtained in large quantities by use of an enzyme-mediated enantioselective hydrolysis of the racemic ester 4. The dextrorotatory enantiomer has been used to prepare the synthon 9 for the $\mathrm{C}_{1}-\mathrm{C}_{6}$ portion of leukotriene- B_{4} while the laevorotatory enantiomer has been converted into the complementary building block 19 for the $\mathrm{C}_{7}-\mathrm{C}_{20}$ portion of the natural product.

Experimental

Where necessary solvents were dried and purified according to recommended procedures. Light petroleum refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$; ether is diethyl ether. Organic solvents were dried over magnesium sulphate and evaporation refers to solvent removal on a rotary evaporator under reduced pressure. TLC was performed on precoated plates (Merck silica gel 60F 254). Chromatography refers to the method of Still et al. ${ }^{11}$ using MN Kieselgel 60/230-400 mesh. Buffer was made up using AnalaR reagents and water purified by a Milli-Q reagent grade water system.

Melting points were determined on an Electrothermal melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 881 grating spectrophotometer. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker AM 250 spectrometer. J Values are in Hz . Optical rotations were determined using a Thorn NPL type 243 automatic polarimeter and values are recorded in $10^{-1} \mathrm{deg} \mathrm{cm}^{2}$ g^{-1}. Accurate mass determinations were obtained from the SERC mass spectrometry service centre, Swansea.
Porcine pancreatic lipase was obtained from Sigma.
(\pm)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6-one 2.-A solution of triethylamine ($100 \mathrm{~g}, 995 \mathrm{mmol}$) in dry chloroform (80 ml) was added dropwise to a stirred solution of isobutyryl chloride ($101 \mathrm{~g}, 948 \mathrm{mmol}$) and freshly distilled cyclopentadiene $\left(140 \mathrm{~g}, 2121 \mathrm{mmol}\right.$) in dry chloroform (500 ml) at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The reaction mixture was stirred for 30 \min at $0^{\circ} \mathrm{C}$ and then for 12 h at room temperature. The mixture was then filtered and the solid was washed with light petroleum (300 ml), the combined organic fractions were washed with saturated aqueous sodium hydrogen carbonate ($2 \times 300 \mathrm{ml}$) and water $(2 \times 300 \mathrm{ml})$ then dried and evaporated to give a brown oil; vacuum distillation through a Vigreux column gave the dimethylcyclobutanone $2(108 \mathrm{~g}, 83 \%)^{8}$ as a clear oil; R_{F} 0.61 (dichloromethane); b.p. $68{ }^{\circ} \mathrm{C} / 12 \mathrm{mmHg} ; v_{\max } / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 1764(\mathrm{C}=\mathrm{O})$ and $1602(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.87-5.78$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.74-5.67(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.93(1 \mathrm{H}$, ddd, $J 8,8$ and $2.5,5-\mathrm{H}), 3.22-3.13(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.67-2.31(2 \mathrm{H}, \mathrm{m}$, $2 \times 4-\mathrm{H}), 1.30(3 \mathrm{H}, \mathrm{s}, 7$-Me-exo) and 0.95 ($3 \mathrm{H}, \mathrm{s}, 7$-Me-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 218.9(\mathrm{C}=\mathrm{O}), 133.8(\mathrm{CH}, \mathrm{C}-3), 130.5(\mathrm{CH}, \mathrm{C}-2)$, 64.3 (C, C-7), 57.7 (CH, C-1), $50.4(\mathrm{CH}, \mathrm{C}-5), 33.8\left(\mathrm{CH}_{2}, \mathrm{C}-4\right)$, 22.4 and $17.1(\mathrm{Me})$.
(\pm)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6exo-ol 3.-A solution of LiAlH_{4} in ether ($1.0 \mathrm{~m} ; 27.5 \mathrm{ml}, 27.5 \mathrm{mmol}$) was added dropwise to a stirred solution of anhydrous aluminium chloride $(13.34 \mathrm{~g}, 100 \mathrm{mmol})$ in dry ether (100 ml) at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to room temperature. A solution of the dimethylbicycloheptanone $2(14.3 \mathrm{~g}, 105 \mathrm{mmol})$ in dry ether (100 ml) was added dropwise over a 1 h period. The reaction mixture was then refluxed for 1 h during which time a pink colour developed. Excess of hydride was destroyed at $0^{\circ} \mathrm{C}$ by the dropwise addition of water and the precipitate formed was dissolved upon the addition of sulphuric acid ($10 \% \mathrm{v} / \mathrm{v} ; 50$ ml). The organic phase was separated, the aqueous phase was extracted with ether (100 ml), and the combined organic phases

19
18
Scheme 3 Reagents: i, N-Bromoacetamide, $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{COCH}_{3}, 2 \mathrm{~h}$, room temp.; ii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, room temp., 2 h then $\mathrm{h} v$, benzene, room temp., 4 h ; iii, $\mathrm{Bu}_{2}{ }_{2} \mathrm{AlH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iv, $\mathrm{ClSiBu}^{i} \mathrm{Me}_{2}$, imidazole, HCONMe_{2}, room temp., 8 h ; v, O_{3} then $\mathrm{Me}_{2} \mathrm{~S}-78{ }^{\circ} \mathrm{C}$; vi, $\mathrm{Ph}_{3} \mathrm{PCHC}_{5} \mathrm{H}_{11}$, toluene, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; vii, $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{SH}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2$ h then $\mathrm{Et}_{3} \mathrm{~N}$; viii, $\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{room}^{2}$ temp., 1 h ; ix, $\mathrm{CdCO}_{3}, \mathrm{HgCl}_{2}$, MeI, $\mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{H}_{2} \mathrm{O}, 4 \mathrm{~h}$, room temp.; $\mathrm{x}, \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$, piperidine, $\mathrm{CH}_{3} \mathrm{CN}$, room temp., 8 h ; xi, $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}$, dimethylaminopyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}$, room temp.; xii, $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}, \mathrm{Et}_{3} \mathrm{~N}$, THF, heat 3 h .

20

21

22
were dried and evaporated to give a brown oil. Chromatography (dichloromethane) gave the exo-alcohol $3^{12}(11.6 \mathrm{~g}, 80 \%)$ as a white solid. $R_{\mathbf{F}} 0.24$ (dichloromethane); m.p. $36-38^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3608(\mathrm{OH}$, free $)$ and $3429(\mathrm{OH}$, H-bonded); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.67-4.68(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 3.47(1 \mathrm{H}, \mathrm{d}, J 5.5$, 6-H-endo), 2.74-2.66 (1 H, m, 1-H), 2.64-2.54 (1 H, m, 5-H), $2.52-2.20(2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H}), 2.06(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.10(3 \mathrm{H}, \mathrm{s}, 7-$ Me-exo) and 0.92 ($3 \mathrm{H}, \mathrm{s}, 7$-Me-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 132.2$ $(2 \times \mathrm{CH}, \mathrm{C}-2$ and $\mathrm{C}-3), 80.8(\mathrm{CH}, \mathrm{C}-6), 51.0(\mathrm{CH}, \mathrm{C}-1), 43.4$ (CH and $\mathrm{C}, \mathrm{C}-5$ and $\mathrm{C}-7$), $37.3\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 22.6(\mathrm{Me})$ and 22.5 (Me).
(\pm)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6exo-yl acetate 4.-4-Dimethylaminopyridine ($150 \mathrm{mg}, 1.23 \mathrm{mmol}$), dry pyridine $(1.5 \mathrm{ml}, 18.5 \mathrm{mmol})$ and acetic anhydride $(2.02 \mathrm{ml}, 18.5 \mathrm{mmol})$ were added sequentially to a stirred solution of the 6 exo-alcohol $3(1.7 \mathrm{~g}, 12.32 \mathrm{mmol})$ in dry dichloromethane (30 ml). The mix-
ture was stirred overnight at room temperature and then washed with water ($2 \times 25 \mathrm{ml}$), saturated aqueous sodium hydrogen carbonate (25 ml), hydrochloric acid ($1.0 \mathrm{M} ; 25 \mathrm{ml}$) and brine (25 $\mathrm{ml})$. The aqueous washes were extracted with dichloromethane $(50 \mathrm{ml})$ and the combined organic fractions were dried and evaporated to give a yellow oil. The oil was distilled under reduced pressure to give the title compound $4(2.8 \mathrm{~g}, 91 \%)$ as a clear oil; $R_{\mathrm{F}} 0.35$ [light petroleum-dichloromethane ($1: 1 \mathrm{v} / \mathrm{v}$)]; b.p. $75^{\circ} \mathrm{C} / 12 \mathrm{mmHg} ; \quad v_{\max } / \mathrm{cm}^{-1} \quad\left(\mathrm{CHCl}_{3}\right) \quad 1720 \quad(\mathrm{C}=\mathrm{O}$ ester $) ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.81-5.69(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.34-4.30(1 \mathrm{H}, \mathrm{m}, 6-$ H-endo), 2.81-2.76 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $5-\mathrm{H}), 2.49-2.40(2 \mathrm{H}, \mathrm{m}$, $2 \times 4-\mathrm{H}), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.10(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-\mathrm{exo})$ and $1.0(3$ H, s, 7 -Me-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.6(\mathrm{C}=\mathrm{O}$, ester), $132.6(\mathrm{CH}, \mathrm{C}$ 3), $131.6(\mathrm{CH}, \mathrm{C}-2), 82.1(\mathrm{CH}, \mathrm{C}-6), 51.6(\mathrm{CH}, \mathrm{C}-1), 43.3(\mathrm{C}$, $\mathrm{C}-7), 40.1(\mathrm{CH}, \mathrm{C}-5), 37.2\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 23.4,22.9$ and $20.8(\mathrm{Me})$ (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 198.1494 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M+\mathrm{NH}_{4}$, 198.1494).

Enzymatic Resolution of (\pm)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6exo-yl Acetate 4.-Porcine pancreatic lipase (ppl) (165×10^{3} units) was added to a vigorously stirred suspension of the exo-acetate $4(40 \mathrm{~g}, 222 \mathrm{mmol})$ in pH 8.0 buffer (0.1 m ; $4.0 \mathrm{dm}^{3}$) at room temperature. The ensuing hydrolysis was monitored by the addition of aqueous sodium hydroxide of known concentration to maintain the pH at its initial value. At 15 h intervals a further 110×10^{3} units of ppl were added and after 84 h the reaction was stopped by the addition of ether ($1.5 \mathrm{dm}^{3}$). The organic layer was separated and the aqueous layer was extracted with ether ($5 \times 500 \mathrm{ml}$). The organic fractions were combined, dried and evaporated to give a yellow oil. Chromatography (dichloromethane) gave the exo-alcohol $(-)-3(12.25 \mathrm{~g}, 40 \%)$ as a white solid; m.p. $42-43^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}$ $-146\left(c 0.45, \mathrm{CHCl}_{3}\right)$; enantiomeric excess $>98.8 \%$ [as judged by the ${ }^{19} \mathrm{~F}$ NMR spectrum of the Mosher's ester derivative (vide infra $)$], and the (+)-exo-acetate $4(17.6 \mathrm{~g}, 44 \%$). The recovered acetate was resubmitted to the enzyme-catalysed hydrolysis procedure to give more optically active alcohol (3%) and optically pure acetate 4 ($>98 \%$ e.e. as judged by NMR spectroscopy using a chiral shift reagent).
(1S,5R,6S)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6exo-ol (+)-3.-A solution of the $(+)$-exo-acetate $4(4.0 \mathrm{~g}, 22.4 \mathrm{mmol})$ in dry ether (15 ml) was added to a stirred solution of LiAlH_{4} ($504 \mathrm{mg}, 33.6 \mathrm{mmol}$) in dry ether (20 ml) at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The mixture was stirred for 8 h at room temperature after which excess of hydride was destroyed at $0^{\circ} \mathrm{C}$ by the dropwise addition of water. The mixture was filtered and the solid was washed with ether (30 ml). The organic phase was separated, dried and evaporated to give a clear oil. Chromatography [light petroleum-ether ($1: 1 \mathrm{v} / \mathrm{v}$)] gave the alcohol $(+)-3(2.8 \mathrm{~g}, 91 \%)$ as a white solid; m.p. $42-$ $43^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+146.5\left(c 0.42, \mathrm{CHCl}_{3}\right)$.

Preparation of the Mosher's Ester Derivative of 7,7-Dimethyl-bicyclo[3.2.0]hept-2-en-6exo-ol 3.-A solution of the (\pm)-exoalcohol $3(13.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry carbon tetrachloride (0.1 $\mathrm{ml})$ was added to a stirred solution of pyridine $(0.3 \mathrm{ml}, 3.7$ mmol) and α-methoxy-4-(trifluoromethyl)phenylacetyl chloride ($0.036 \mathrm{ml}, 0.20 \mathrm{mmol}$) in dry carbon tetrachloride (0.3 ml) under an atmosphere of nitrogen. After 3 h an excess of 3 -dimethylaminopropylamine was added and the stirring was continued for 5 min . The reaction mixture was diluted with ether (10 ml) and washed with cold hydrochloric acid (2 m ; $3 \times 10 \mathrm{ml}$), saturated aqueous sodium carbonate (10 ml) and brine (10 ml). The organic fraction was dried and evaporated to give a clear oil. Examination of the ${ }^{19} \mathrm{~F}$ NMR spectrum of the MTPA derivative showed two peaks at 90.2 and 90.05 ppm , the latter being the peak for the (- -exoalcohol, (-)-3.
(1R,5S)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6-one (+)-2.Dry dimethyl sulphoxide ($2.16 \mathrm{ml}, 28 \mathrm{mmol}$) was added to a stirred solution of oxalyl chloride ($1.3 \mathrm{ml}, 14.3 \mathrm{mmol}$) in dry dichloromethane (30 ml) at -60 to $-70^{\circ} \mathrm{C}$. After 2 min a solution of the exo-alcohol $(-)-3(1.8 \mathrm{~g}, 13 \mathrm{mmol})$ in dry dichloromethane (15 ml) was added over a period of 5 min . The reaction mixture was stirred for a further 15 min after which triethylamine ($9.1 \mathrm{ml}, 65 \mathrm{mmol}$) was added. After 5 min the mixture was allowed to warm to room temperature when it was diluted with water (75 ml) and the aqueous layer was reextracted with dichloromethane (75 ml). The organic fractions were combined and washed with brine (100 ml), dried and evaporated to give a yellow oil. Chromatography [light petroleum-ether ($1: 1 \mathrm{v} / \mathrm{v}$)] gave the title compound (+)-2 $(1.68 \mathrm{~g}, 95 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}^{23}+66\left(c 1.24, \mathrm{CHCl}_{3}\right),\{\mathrm{lit.})^{12}$ $\left.[\alpha]_{\mathrm{D}}+46.3\left(c 1.21, \mathrm{CHCl}_{3}\right)\right\}$.
(1S,5R)-7,7-Dimethylbicyclo[3.2.0]hept-2-en-6-one (-)-2.The compound was prepared as previously described for compound (+)-2. From the (+)-exo-alcohol $\mathbf{3}(1.8 \mathrm{~g}, 13 \mathrm{mmol}$) the title compound (-)-2 $(1.68 \mathrm{~g}, 95 \%$) was obtained as a clear oil; $[\alpha]_{\mathrm{D}}^{23}-67\left(c 1.12, \mathrm{CHCl}_{3}\right)$.
(1R,2R,3S,5S)-2,3exo-Epoxy-7,7-dimethylbicyclo[3.2.0]-heptan-6-one 5.-meta-Chloroperoxybenzoic acid ($3.34 \mathrm{~g}, 16.5$ $\mathrm{mmol})$ was added portionwise to a stirred solution of $(+)-7,7-$ dimethylbicyclo[3.2.0]hept-2-en-6-one ($2.1 \mathrm{~g}, 15.4 \mathrm{mmol}$) in dichloromethane (25 ml) at room temperature. The mixture was stirred for 20 h , filtered and evaporated. Ether (30 ml) was added to the residue which was washed with aqueous sodium hydroxide $(3 \% \mathrm{w} / \mathrm{v} ; 2 \times 20 \mathrm{ml})$ and water $(2 \times 20 \mathrm{ml})$ and then dried and evaporated to give an oil. Chromatography (dichloromethane) of this gave the title compound ($1.53 \mathrm{~g}, 65 \%$); $R_{\mathrm{F}} 0.2$ (dichloromethane); $[\alpha]_{\mathrm{D}}^{26}+151$ (c $0.302, \mathrm{CHCl}_{3}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1773(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.60-3.48(3 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 2.82(1 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{H}), 2.15-2.10(2 \mathrm{H}$, $\mathrm{m}, 2 \times 4-\mathrm{H}), 1.25(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-$ exo $)$ and $1.12(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-$ endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ no $\mathrm{C}=\mathrm{O}$ seen, $59.92,59.79$ and $59.21(\mathrm{CH})$, $58.78(\mathrm{C}, \mathrm{C}-7), 44.92(\mathrm{CH}, \mathrm{C}-1), 29.70\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 24.01$ and 17.24 (Me) (Found: $\mathrm{M}^{+}+\mathrm{H}, 153.0916 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $M+\mathrm{H}, 153.0915)$.
(1R,2R,3R,5S)-2exo-Hydroxy-3endo-iodo-7,7-dimethylbicy-clo[3.2.0]heptan-6-one.-Hydroiodic acid (57\% solution of hydrogen iodide in water; 1 equiv.) was added dropwise to a stirred solution of the epoxy ketone $5(1.3 \mathrm{~g}, 8.55 \mathrm{mmol})$ in acetone (15 ml) at room temperature. The mixture was stirred for 4 h after which dichloromethane (30 ml) was added and the organic phase was washed with aqueous sodium hydrogencarbonate ($5 \% \mathrm{w} / \mathrm{v} ; 20 \mathrm{ml}$) and aqueous sodium hydrogen sulphite ($10 \% \mathrm{w} / \mathrm{v} ; 20 \mathrm{ml}$). The aqueous washes were extracted with dichloromethane (20 ml) and the combined organic extracts were dried and evaporated to give an oil. Chromatography [dichloromethane-acetone ($19: 1 \mathrm{v} / \mathrm{v}$)] gave the iodohydrin ($2.23 \mathrm{~g}, 93 \%$) as a white solid; $R_{\mathrm{F}} 0.33$ [dichloromethane-acetone ($19: 1 \mathrm{v} / \mathrm{v}$)]; m.p. $87-89^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}$ $+76\left(c 0.96, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3683(\mathrm{OH}$, free $), 3481$ (OH, H bonded) and $1782(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.13-3.78(3 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}), 2.68(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{OH}), 2.50-2.31$ ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}$ and 1-H), 2.18-2.07 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$), $1.34(3 \mathrm{H}, \mathrm{s}$, 7-Me-exo) and 1.23 ($3 \mathrm{H}, \mathrm{s}, 7$-Me-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 214.59$ (C=O), 82.17 (CH, C-2), 60.66 (C, C-7), $57.99(\mathrm{CH}), 46.08(\mathrm{CH}$, $\mathrm{C}-1), 34.56\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 32.21(\mathrm{CH}), 25.42$ and $16.29(\mathrm{Me})$ (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 298.0304 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{IO}_{2}$ requires $\mathrm{M}+\mathrm{NH}_{4}$, 298.0304).
(1R,2S,5S)-2exo-Hydroxy-7,7-dimethylbicyclo[3.2.0]hep-tan-6-one.-A catalytic amount of α, x^{\prime}-azoisobutyronitrile (AIBN) ($3.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) and and tributyltin hydride $(3.6 \mathrm{~g}$, $12.33 \mathrm{mmol})$ were added to a stirred solution of the iodohydrin $(1.15 \mathrm{~g}, 4.11 \mathrm{mmol}$) in dry benzene (20 ml) under an atmosphere of nitrogen. The reaction mixture was stirred at room temperature for 30 min after which it was evaporated and the residue was partitioned between hexane (20 ml) and acetonitrile (20 ml). The hexane layer was separated and washed with acetonitrile (20 ml) and the combined acetonitrile fractions were evaporated to give an oil. Chromatography [dichloro-methane-acetone ($15: 1 \mathrm{v} / \mathrm{v}$)] of this gave the hydroxy ketone ($582 \mathrm{mg}, 92 \%$) as a clear oil; $R_{\mathrm{F}} 0.12$ [dichloromethane-acetone (19:1 $\mathrm{v} / \mathrm{v})] ;[\alpha]_{\mathrm{D}}^{26}+167\left(c, 1.08 \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3447(\mathrm{OH})$ and $1773(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H})$, 3.78-3.68 (1 H, m, 5-H), $2.43(1 \mathrm{H}, \mathrm{d}, J 8.01-\mathrm{H}), 1.99-1.54$ ($5 \mathrm{H}, \mathrm{m}, 2 \times 3 \mathrm{H}, 2 \times 4-\mathrm{H}$ and OH), $1.29(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}$-exo) and $0.96\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}\right.$-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 220.03(\mathrm{C}=\mathrm{O}), 73.83$ (CH, C-2), 60.49 (CH, C-5), 59.33 (C, C-7), 51.42 (CH, C-1),
35.45 and $25.62\left(\mathrm{CH}_{2}\right), 25.41$ and $15.69(\mathrm{Me})$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 155.1072. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M+\mathrm{H}, 155.1072$).

Photolysis of (1R,2S,5S)-2exo-Hydroxy-7,7-dimethylbicyclo-[3.2.0]heptan-6-one.-Argon was passed through a stirred solution of the title ketone ($0.50 \mathrm{~g}, 3.25 \mathrm{mmol}$) in dry benzene for 45 min . The solution was irradiated at room temperature under an atmosphere of argon through a quartz filter using a 125 W lamp for 4 h . The solvent was then evaporated to give a yellow oil. Chromatography (dichloromethane) of this gave the (S)-tetrahydro-6-(2-methylprop-1-enyl)-2H-pyran-2-one 6 ($210 \mathrm{mg}, 42 \%$) as a clear oil; $R_{\mathrm{F}} 0.22$ (dichloromethane); $[\alpha]_{\mathrm{D}}^{26}$ $+120 \quad\left(c, \quad 0.87 \quad \mathrm{CHCl}_{3}\right) ; \quad v_{\max }($ neat $) / \mathrm{cm}^{-1} \quad 1721 \quad(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.24-5.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{Me}_{2}\right), 4.95(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $2.64-2.36(2 \mathrm{H}, \mathrm{m}, 2 \times 3-\mathrm{H}), 1.98-1.52(4 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H}$ and $2 \times 5-\mathrm{H}), 1.73(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-$ exo $)$ and $1.69(3 \mathrm{H}, \mathrm{s}$, 7-Me-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 171.59 \quad(\mathrm{C}=\mathrm{O}), 138.18 \quad\left(\mathrm{C}, \mathrm{C}-2^{\prime}\right), 123.28(\mathrm{CH}$, $\left.\mathrm{C}-1^{\prime}\right), 77.36(\mathrm{CH}, \mathrm{C}-6), 29.42,28.49$ and $18.55\left(\mathrm{CH}_{2}\right), 25.60$ and 18.27 (Me) (Found: $\mathrm{M}^{+}, 154.0994 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires M, 154.0994).
(S)-Ethyl 5-Benzoyloxy-7,7-dimethylhept-6-enoate 8.Potassium carbonate ($45 \mathrm{mg}, 0.325 \mathrm{mmol}$) was added to a stirred solution of the δ-lactone ($50 \mathrm{mg}, 0.325 \mathrm{mmol}$) in dry ethanol (2.0 ml) at room temperature. The mixture was stirred for 8 h , filtered and evaporated to give an oil which was dissolved in dry pyridine (1.5 ml). Benzoyl chloride $(0.046 \mathrm{ml}$, 0.4 mmol) was then added to the stirred solution at $0^{\circ} \mathrm{C}$. After 4 h water (5.0 ml) was added and the mixture was extracted with ether (10 ml), dried and evaporated to give a yellow oil. Chromatography (dichloromethane) of this gave the benzoyloxy ester 8 ($71 \mathrm{mg}, 72 \%$) as a clear oil; $R_{\mathrm{F}} 0.47$ (dichloromethane); $[\alpha]_{\mathrm{D}}^{26}+44\left(c, 0.43 \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1713(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.10-8.02(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.60-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.78-5.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.26-5.18(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.12(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.5, \mathrm{OCH}_{2}\right), 2.34(2 \mathrm{H}, \mathrm{t}, J 7.25,2 \times 2-\mathrm{H}), 1.90-1.62(10 \mathrm{H}, \mathrm{m}$, $2 \times 3-\mathrm{H}, 2 \times 4-\mathrm{H}$ and $2 \times \mathrm{Me})$ and $1.24(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 173.26$ and $165.73(\mathrm{C}=\mathrm{O}), 137.51$ and $130.88(\mathrm{C}), 132.63,129.56$ and $128.23(\mathrm{Ph}), 123.48(\mathrm{CH}=$ $\left.\mathrm{CMe}_{2}\right) 71.79(\mathrm{CH}, \mathrm{C}-5), 60.23,34.46,34.05$ and $20.72\left(\mathrm{CH}_{2}\right)$, $25.73,16.49$ and 14.19 (Me) (Found: $\mathbf{M}^{+}+\mathrm{NH}_{4}, 322.2018$. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $M+\mathrm{NH}_{4}, 322.2018$).
(S)-Ethyl 5-Benzoyloxy-5-formylpentanoate 9.- Ozonised oxygen was passed through a stirred solution of the benzoyloxy ester ($20 \mathrm{mg}, 0.066 \mathrm{mmol}$) in dry dichloromethane $(1.5 \mathrm{ml})$ at $-60^{\circ} \mathrm{C}$ for 30 min . Argon was passed through the solution for 15 min after which dimethyl sulphide ($0.01 \mathrm{ml}, 0.132 \mathrm{mmol}$) was added. The mixture was allowed to warm to room temperature and the solvent was evaporated to give an oil. Chromatography [dichloromethane-acetone ($30: 1 \mathrm{v} / \mathrm{v}$)] of this gave the aldehyde $9(12.8 \mathrm{mg}, 70 \%)$ as a clear oil; $R_{\mathrm{F}} 0.11$ (dichloromethane); $[\alpha]_{\mathrm{D}}^{26}-32\left(c, 0.5 \mathrm{CHCl}_{3}\right) \quad\left\{\right.$ lit., ${ }^{9} \quad[\alpha]_{\mathrm{D}}-32.8 \quad(c, 0.5$, $\left.\left.\mathrm{CHCl}_{3}\right)\right\} ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1723 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.63$ ($1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{CHO}$), 8.15-7.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.65-7.24 (3 H, $\mathrm{m}, \mathrm{ArH}), 5.26-5.20(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right)$, $2.39(2 \mathrm{H}, \mathrm{t}, J 7.0,2 \times 2-\mathrm{H}), 2.06-1.78(4 \mathrm{H}, \mathrm{m}, 2 \times 3-\mathrm{H}$ and $2 \times 4-\mathrm{H})$ and $1.24\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $197.9(\mathrm{CHO}), 172.75(\mathrm{C}=\mathrm{O}, \mathrm{C}-1)$, COPh not seen, $133.57,129.87$ and $128.54(\mathrm{Ph}), 78.31(\mathrm{CH}, \mathrm{C}-5), 60.44,33.68,28.31$ and 20.49 $\left(\mathrm{CH}_{2}\right)$ and $14.17(\mathrm{Me})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 279.1232 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $M+\mathrm{H}, 279.1232$).
(1S,2S,3S,5R)-2exo-Bromo-3endo-hydroxy-7,7-dimethylbi-cyclo[3.2.0]heptan-6-one $\mathbf{1 0}$. N - -Bromoacetamide $(8.61 \mathrm{~g}$, 62.4 mmol) was added portionwise to a stirred solution of the $(-)$-dimethyl ketone, $(-)-2(5.7 \mathrm{~g}, 41.9 \mathrm{mmol})$ in acetone (83 $\mathrm{ml})$ and water $(17 \mathrm{ml})$. The mixture was stirred for 2 h at room
temperature after which it was diluted with water (40 ml); aqueous sodium metabisulphite ($10 \% \mathrm{w} / \mathrm{v}$) was then added until the yellow colour of the mixture had faded. The acetone was evaporated and the aqueous residue was extracted with dichloromethane ($3 \times 50 \mathrm{ml}$). The combined organic extracts were dried and evaporated to give a milky oil. Chromatography [light petroleum-ethyl acetate ($5: 1 \mathrm{v} / \mathrm{v}$)] gave the bromohydrin 10 ($7.3 \mathrm{~g}, 76 \%$) as a white solid; $R_{\mathrm{F}} 0.31$ [dichloromethaneacetone ($3: 1 \mathrm{v} / \mathrm{v})]$; m.p. $113-116^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-103.8$ (c 0.46, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3607(\mathrm{OH}$, free), $3420(\mathrm{OH}, \mathrm{H}-$ bonded) and $1777(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.57-4.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}-$ exo), 4.23 (1 H , br s, 2-H-endo), $3.93-3.85(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.95$ ($1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.0,1-\mathrm{H}), 2.44-2.32(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}-$ exo $), 2.15-$ $2.05(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$-endo and OH$), 1.32(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-$ exo $)$ and ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-$ endo $)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 216.9(\mathrm{C}=\mathrm{O}), 81.9(\mathrm{CH}, \mathrm{C}-3)$, $62.9(\mathrm{C}, \mathrm{C}-7), 58.7,54.1$ and $52.6(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 26.6$ and 18.2 (Me) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 250.0443 . \mathrm{C}_{9} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{2}$ requires $M+\mathrm{NH}_{4}, 250.0443$).
(1S,3S,5R)-3endo-Hydroxy-7,7-dimethylbicyclo[3.2.0]hep-tan-6-one.-A catalytic amount of AIBN ($4.9 \mathrm{mg}, 0.30 \mathrm{mmol}$) and tributyltin hydride $(4.34 \mathrm{~g}, 14.9 \mathrm{mmol})$ were added to a stirred solution of the (-)-bromohydrin $10(2.32 \mathrm{~g}, 10 \mathrm{mmol})$ in dry toluene $(50 \mathrm{ml})$ and the reaction mixture was stirred at room temperature for 2 h . It was then evaporated and the residue was partitioned between hexane $(100 \mathrm{ml})$ and acetonitrile (100 ml). The hexane layer was separated and washed with acetonitrile (30 ml) and the combined acetonitrile fractions were evaporated to give a brown solid. Chromatography [dichloromethane-acetone $(19: 1 \mathrm{v} / \mathrm{v})$] of this gave the title compound $(1.26 \mathrm{~g}, 82 \%)$ as a white solid; $R_{\mathrm{F}} 0.15$ [dichloromethane-acetone $(19: 1 \mathrm{v} / \mathrm{v})$]; m.p. $77-80^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}$ $-166.5\left(c 0.31, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610(\mathrm{OH}$, free $)$, $3483\left(\mathrm{OH}, \mathrm{H}\right.$-bonded) and $1766(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.47-4.41$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.71(1 \mathrm{H}$, ddd, $J 8.0,8.0$ and $1.0,5-\mathrm{H}), 2.53$ $(1 \mathrm{H}$, ddd, $J 8.0,8.5$ and $1.5,1-\mathrm{H}), 2.09-1.43(5 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{H}$, $2 \times 4-\mathrm{H}$ and OH$), 1.29(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}-\mathrm{exo})$ and $1.16(3 \mathrm{H}, \mathrm{m}$, 7-Me-endo); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 219.5(\mathrm{C}=\mathrm{O}), 75.4(\mathrm{CH}, \mathrm{C}-3), 60.8$ $(\mathrm{C}, \mathrm{C}-7), 59.0$ and $42.4(\mathrm{CH}), 38.7$ and $35.1\left(\mathrm{CH}_{2}\right), 26.6$ and 18.2 (Me) (Found: $\mathrm{M}^{+}, 154.0994 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 154.0994$).

Photolysis of (1S,3S,5R)-3endo-Hydroxy-7,7-dimethylbicy-clo[3.2.0]heptan-6-one.-Argon was passed through a stirred solution of the title ketone ($946 \mathrm{mg}, 6.26 \mathrm{mmol}$) in dry benzene $(100 \mathrm{ml})$ for 45 min . The solution was irradiated at room temperature under an atmosphere of argon through a quartz filter using a 125 W lamp for 4 h . The solvent was evaporated to give a yellow oil. Chromatography [dichloromethaneacetone $(25: 1 \mathrm{v} / \mathrm{v})]$ of this gave the desired (S)-dihydro-5-(3-methylbut-2-enyl) furan-2(3H)-one 11 ($390 \mathrm{mg}, 41 \%$) as a clear oil; $R_{\mathrm{F}} 0.57$ [dichloromethane-acetone $\left.(19: 1 \mathrm{v} / \mathrm{v})\right] ;[\alpha]_{\mathrm{D}}^{23}$ +24.6 (c $1.04, \mathrm{MeOH})\left\{\mathrm{lit} .,^{11}[\alpha]_{\mathrm{D}}^{23}+20(c 1.2, \mathrm{MeOH})\right\} ;$ $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1765(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.16-5.07(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.50(1 \mathrm{H}$, quintet, $J 6.5,5-\mathrm{H}), 2.54-1.80(6 \mathrm{H}, \mathrm{m}$, $2 \times 3-\mathrm{H}, 2 \times 4-\mathrm{H}$ and $\left.2 \times 1^{\prime}-\mathrm{H}\right), 1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and 1.64 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 177.1(\mathrm{C}=\mathrm{O}), 135.8(\mathrm{C}, \mathrm{C}-8), 117.4$ $(\mathrm{CH}, \mathrm{C}-7), 80.6(\mathrm{CH}, \mathrm{C}-5), 33.8,28.7,27.1\left(\mathrm{CH}_{2}\right), 25.7$ and 17.9 (Me) (Found: $\mathrm{M}^{+}, 154.0994 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 154.0994$) and the tricyclic acetal 12 ($385 \mathrm{mg}, 40 \%$) as a colourless oil; R_{F} 0.23 [dichloromethane-acetone $(19: 1 \mathrm{v} / \mathrm{v})$]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.34$ ($1 \mathrm{H}, \mathrm{d}, J 2.8,2-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}), 3.04-2.98(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 2.22-2.13(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.02-1.55(4 \mathrm{H}, \mathrm{m}, 2 \times 6-\mathrm{H}$ and $2 \times 8-\mathrm{H}), 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.
(2R,5S) and (2S,5S)-Tetrahydro-5-(3-methylbut-2-enyl) furan-2-ol 13.-A solution of diisobutylaluminium hydride in toluene $(1.0 \mathrm{~m} ; 9.54 \mathrm{ml}, 9.54 \mathrm{mmol})$ was added dropwise to a stirred solution of the lactone $12(980 \mathrm{mg}, 6.36 \mathrm{mmol})$ in dry
dichloromethane (100 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The reaction mixture was stirred for 30 min after which methanol (150 ml) was added slowly, the temperature being kept $<-70^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature after which it was filtered through Celite and evaporated to give a cloudy white oil. Chromatography [dichloromethane-acetone ($12: 1 \mathrm{v} / \mathrm{v}$)] gave a $1.2: 1$ mixture of the (2 R)- and (2S)-tetrahydrofuranols 13 (903 mg , 91%) as a clear oil; $R_{\mathrm{F}} 0.24$ [dichloromethane-acetone (19:1 $\mathrm{v} / \mathrm{v})] ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3595(\mathrm{OH}$, free $), 3405(\mathrm{OH}, \mathrm{H}-$ bonded) and $1600(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.54$ and $5.45(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 5.21-5.08\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.22$ and $4.02(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 2.78-1.58 (13 H , remaining H) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}$, 156.1388. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}, 156.1388$).
(2R,5S)- and (2S,5S)-Tetrahydro-2-(tert-butyldimethylsilyl-oxy)-5-(3-methylbut-2-enyl)furan 14.-A mixture of imidazole $(1.26 \mathrm{~g}, 18.5 \mathrm{mmol})$ and tert-butyldimethylsilyl chloride $(1.39 \mathrm{~g}$, $9.25 \mathrm{mmol})$ in dry DMF (15 ml) was added to a stirred solution of the lactols 13 ($721 \mathrm{mg}, 4.62 \mathrm{mmol}$) in dry DMF (5.0 ml) under an atmosphere of nitrogen. The reaction mixture was stirred at room temperature for 8 h and then diluted with water (150 ml) and extracted with ether ($3 \times 50 \mathrm{ml}$). The combined ether extracts were washed with brine (50 ml), dried and evaporated to give a yellow oil. Chromatography [light petroleumdichloromethane ($6: 1 \mathrm{v} / \mathrm{v}$)] of this gave the title compounds 14 ($1.18 \mathrm{~g}, 95 \%$) as a clear oil; $R_{\mathrm{F}} 0.66$ and 0.60 [dichloromethanelight petroleum ($3: 1 \mathrm{v} / \mathrm{v}$)]; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2931$ and 2858 $(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.50$ and $5.43(1 \mathrm{H}, \mathrm{dd}, J 4.5$ and $1.5,2-\mathrm{H})$, $5.21-5.07\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.13$ and $3.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.46-1.58$ ($12 \mathrm{H}, \mathrm{m}, 2 \times 3-\mathrm{H}, 2 \times 4-\mathrm{H}, 2 \times 1^{\prime}-\mathrm{H}$ and $2 \times \mathrm{Me}$), $0.88(9 \mathrm{H}$, br s, Bu^{+}) and $0.10\left(6 \mathrm{H}\right.$, br s, SiMe_{2}) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 271.2093. $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ requires $M+\mathrm{H}, 271.2093$).
(2R,5S)- and (2S,5S)-Tetrahydro-2-tert-butyldimethylsilyl-oxy)-5-(2-oxoethyl)furan.-Argon was passed through a stirred solution of the compounds 14 ($280 \mathrm{mg}, 1.04 \mathrm{mmol}$) in dry dichloromethane (15 ml) for 15 min . The solution was cooled to $-78^{\circ} \mathrm{C}$ and dry ozone/oxygen was passed through it for 2 h . Argon was passed through the solution for a further 15 min after which triethylamine ($0.724 \mathrm{ml}, 5.2 \mathrm{mmol}$) was added. After 5 min dimethyl sulphide ($0.38 \mathrm{ml}, 5.2 \mathrm{mmol}$) was added together with an equal volume of methanol. The reaction mixture was allowed to warm to room temperature and was then stirred for a further 1 h . The solvent was evaporated to give a brown oil. Chromatography [light petroleum-ethyl acetate ($6: 1 \mathrm{v} / \mathrm{v}$)] gave the title compounds $(188 \mathrm{mg}, 74 \%$) as a clear oil; $R_{\mathrm{F}} 0.22$ and 0.18 [dichloromethane-light petroleum $(3: 1 \mathrm{v} / \mathrm{v})] ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{CHO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.83$ and $9.77(1 \mathrm{H}, \mathrm{t}, J 2.0, \mathrm{CHO}), 5.51$ and $5.44(1 \mathrm{H}, \mathrm{dd}, J 4.5$ and $1.5,2-\mathrm{H}), 4.58$ and $4.43(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.68-1.43(6 \mathrm{H}, \mathrm{m}$, $2 \times 3-\mathrm{H}, 2 \times 4-\mathrm{H}$ and $\left.2 \times 1^{\prime}-\mathrm{H}\right), 0.95\left(9 \mathrm{H}, \mathrm{br} s, \mathrm{Bu}^{\prime}\right)$ and 0.10 ($6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{SiMe}_{2}$) (Found: $\mathrm{M}^{+}-\mathrm{H}, 243.1411 . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$ requires $M-\mathrm{H}, 243.1417$).
(2R,5S)- and (2S,5S)-Tetrahydro-2-(tert-butyldimethylsilyl-oxy)-5-[(Z)-oct-2-enyl] furan 15.-A solution of sodium bis(trimethylsilyl)amide in THF ($1.0 \mathrm{M} ; 6.55 \mathrm{ml}, 6.55 \mathrm{mmol}$) was added to a stirred suspension of hexyltriphenylphosphonium bromide ($2.8 \mathrm{~g}, 6.55 \mathrm{mmol}$) in dry toluene (50 ml) at room temperature under an atmosphere of nitrogen. The resulting orange mixture was stirred for 30 min at room temperature and then cooled to $-78^{\circ} \mathrm{C}$. A solution of the aldehydes from the previous experiment ($880 \mathrm{mg}, 3.28 \mathrm{mmol}$) in dry toluene (20 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen was rapidly added by cannulation. The reaction mixture was stirred for 30 min , warmed to room temperature, and diluted with water (30 ml) followed by ether (50 ml). The organic phase was separated and
washed with brine ($2 \times 50 \mathrm{ml}$), dried and evaporated to give a light brown oil. Chromatography [light petroleum-ethyl acetate ($10: 1 \mathrm{v} / \mathrm{v}$)] of this gave the title compounds $15(1.02 \mathrm{~g}$, 99%) as a clear oil; $R_{\mathrm{F}} 0.75$ and 0.72 [dichloromethane-light petroleum (3:1 $\mathrm{v} / \mathrm{v})] ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2928$ and 2858; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.54-5.30\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 4.15$ and $3.94(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.54-1.20\left(14 \mathrm{H}, \mathrm{m}, 2 \times 3-, 4-, 1^{\prime}-, 4^{\prime}-, 5^{\prime}-\right.$, $6^{\prime}-$ and $\left.7^{\prime}-\mathrm{H}\right), 0.88\left(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right.$ and Me$)$ and $0.10(6 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{SiMe}_{2}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 313.2563 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$ requires $M+\mathrm{H}, 313.2564)$.
(3S,5Z)-1-(1,3-Dithiolan-2-yl)undec-5-en-3-ol.-Ethane-1,2dithiol ($0.161 \mathrm{ml}, 1.92 \mathrm{mmol}$) and a solution of titanium tetrachloride in dichloromethane ($1.0 \mathrm{~m} ; 0.53 \mathrm{ml}, 0.53 \mathrm{mmol}$) were added to a stirred solution of compounds $\mathbf{1 5}(150 \mathrm{mg}$, 0.48 mmol) in dichloromethane (10 ml) at $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The resulting yellow reaction mixture was stirred for 2 h after which triethylamine $(0.134 \mathrm{ml}, 0.96$ mmol) was added and the mixture turned deep red. The mixture was warmed to room temperature, diluted with dichloromethane (10 ml) and washed with water $(10 \mathrm{ml})$ and brine (10 ml), dried and evaporated to give a clear oil. Chromatography [light petroleum-ethyl acetate ($3: 1 \mathrm{v} / \mathrm{v}$)] of this gave the title dithioacetal ($108 \mathrm{mg}, 82 \%$) as a clear oil; $R_{\mathrm{F}} 0.13$ [dichloromethane-light petroleum ($3: 1 \mathrm{v} / \mathrm{v}$)]; $[\alpha]_{\mathrm{D}}^{23}-11(c$ $\left.0.55, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3685$ and $3618(\mathrm{OH}$, free) and $3465\left(\mathrm{OH}, \mathrm{H}\right.$-bonded); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.64-5.51(1 \mathrm{H}, \mathrm{m}$, from decoupled NMR spectrum $J 10.9,6-\mathrm{H}), 5.43-5.31(1 \mathrm{H}$, $\mathrm{m}, J 10.9,5-\mathrm{H}), 4.50\left(1 \mathrm{H}, \mathrm{t}, J 6.9,2^{\prime}-\mathrm{H}\right), 3.70-3.58(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.31-2.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times 4^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 5^{\prime}-\mathrm{H}\right), 2.23(2 \mathrm{H}, \mathrm{t}, J$ $6.9,2 \times 4-\mathrm{H}), 2.10-1.97(2 \mathrm{H}, \mathrm{m}, 2 \times 7-\mathrm{H}), 1.96-1.79(2 \mathrm{H}, \mathrm{m}$, $2 \times 1-\mathrm{H}), 1.72-1.52(3 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{H}$ and OH$), 1.42-1.23$ $(6 \mathrm{H}, \mathrm{m}, 2 \times 8$-, $9-\mathrm{and} 10-\mathrm{H})$ and $0.90(3 \mathrm{H}, \mathrm{brs}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 133.8 and $124.7(\mathrm{CH}), 70.9$ (CH, C-3), 53.7 (CH, C-2'), 38.4 $\left(2 \times \mathrm{CH}_{2}, \mathrm{C}-4^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 36.1,35.7,35.5,31.5,29.3,27.4$ and $22.5\left(\mathrm{CH}_{2}\right)$ and $14.0(\mathrm{Me})$ (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 292.1769$. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OS}_{2}$ requires $M+\mathrm{NH}_{4}, 292.1769$).
(3S,5Z)-3-(tert-Butyldimethylsilyloxy)-1-($1^{\prime}, 3^{\prime}$-dithiolan- 2^{\prime} $y l$)undec-5-ene 16.-Triethylamine ($0.906 \mathrm{ml}, 6.5 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethanesulphonate $(0.821 \mathrm{ml}$, 3.57 mmol) were added to a stirred solution of the dithioacetal from the previous experiment ($890 \mathrm{mg}, 3.25 \mathrm{mmol}$) in dry dichloromethane (10 ml) under an atmosphere of nitrogen. The reaction mixture was stirred for 1 h at room temperature then dichloromethane (10 ml) was added and the mixture was washed with water (10 ml) and brine (10 ml), dried and evaporated to give a yellow oil. Chromatography [light petroleum-ethyl acetate ($40: 1 \mathrm{v} / \mathrm{v}$)] gave the title compound 16 $(1.16 \mathrm{~g}, 92 \%)$ as a clear oil; $R_{\mathrm{F}} 0.62$ [light petroleumdichloromethane ($1: 1 \mathrm{v} / \mathrm{v}$)]; $[\alpha]_{\mathrm{D}}^{]^{3}}-13(c \quad 0.6, \mathrm{MeOH})$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 2928$ and 2857; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 5.52-5.28 $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}), 4.44\left(1 \mathrm{H}, \mathrm{t}, J 6.9,2^{\prime}-\mathrm{H}\right), 3.76-3.62(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 3.28-3.14\left(4 \mathrm{H}, \mathrm{m}, 2 \times 4^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 5^{\prime}-\mathrm{H}\right), 2.24-2.08$ $(2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H}), 2.06-1.92(2 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{H}), 1.92-1.50(4 \mathrm{H}$, $\mathrm{m}, 2 \times 1-\mathrm{H}$ and $2 \times 7-\mathrm{H}), 1.42-1.22(6 \mathrm{H}, \mathrm{m}, 2 \times 8$-, $9-\mathrm{and}$ $10-\mathrm{H}) 0.90\left(12 \mathrm{H}, \mathrm{br}\right.$ s, Bu^{t} and Me$)$ and $0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 131.8$ and $125.4(\mathrm{CH}), 71.9(\mathrm{CH}, \mathrm{C}-3), 54.1(\mathrm{CH}$, $\mathrm{C}-2^{\prime}$), 38.3 ($2 \times \mathrm{CH}_{2}, \mathrm{C}-4^{\prime}$ and $\mathrm{C}-5^{\prime}$), $36.1,35.2,34.9,31.5,29.3$, 27.4 and $22.5\left(\mathrm{CH}_{2}\right), 25.7(3 \times \mathrm{SiMe}), 18.0(\mathrm{C}), 13.6(\mathrm{Me}),-4.4$ and -4.6 (SiMe) (Found: $\mathrm{M}^{+}+\mathrm{H}, 389.2368 . \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{OS}_{2} \mathrm{Si}$ requires $M+\mathrm{H}, 389.2368)$.
(4S,6Z)-4-(tert-Butyldimethylsilyloxy)dodec-6-enal 17.-Cadmium carbonate ($528 \mathrm{mg}, 3.06 \mathrm{mmol}$), mercury(II) chloride (554 $\mathrm{mg}, 2.04 \mathrm{mmol}$) and methyl iodide ($0.64 \mathrm{ml}, 10.2 \mathrm{mmol}$) were added sequentially to a vigorously stirred suspension of the dithioacetal 16 ($395 \mathrm{mg}, 1.02 \mathrm{mmol}$) in acetone (5.8 ml) and
water (2.2 ml). The mixture was stirred for 4 h at room temperature after which a mixture of light petroleumdichloromethane ($2: 1 \mathrm{v} / \mathrm{v} ; 30 \mathrm{ml}$) was added together with a portion of Celite (3.0 g). The mixture was stirred for a further 30 min after which it was filtered and the solid was washed with dichloromethane (20 ml). The filtrate was washed with aqueous potassium iodide ($10 \% \mathrm{w} / \mathrm{v}$; 15 ml), water (15 ml) and brine (15 ml), dried and evaporated to give a yellow oil. Chromatography [light petroleum-ethyl acetate ($40: 1 \mathrm{v} / \mathrm{v}$)] of this gave the aldehyde $17(255 \mathrm{mg}, 80 \%)$ as a clear oil; $R_{\mathrm{F}} 0.6$ [dichloromethane-light petroleum ($3: 1 \mathrm{v} / \mathrm{v}$)]; $[\alpha]_{\mathrm{D}}^{23}-2(c$ $\left.0.38, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1718(\mathrm{CHO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $9.78(1 \mathrm{H}, \mathrm{t}, J 1.5, \mathrm{CHO}), 5.52-5.28(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 3.79-$ $3.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.52-2.38(2 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{H}), 2.32-2.08(2 \mathrm{H}$, $\mathrm{m}, 2 \times 5-\mathrm{H}), 2.06-1.92(2 \mathrm{H}, \mathrm{m}, 2 \times 8-\mathrm{H}), 1.92-1.62(2 \mathrm{H}, \mathrm{m}$, $2 \times 3-\mathrm{H}), 1.42-1.22(6 \mathrm{H}, \mathrm{m}, 2 \times 9-10-\mathrm{and} 11-\mathrm{H}), 0.92(12 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}$ and Me), $0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 202.5(\mathrm{CHO}), 132.2$ and $124.9(\mathrm{CH}), 71.3(\mathrm{CH}$, $\mathrm{C}-4), 39.8,35.1,31.5,29.2,28.7,27.4$ and $22.4\left(\mathrm{CH}_{2}\right), 25.5$ $(3 \times$ SiMe $), 17.9(\mathrm{C}), 13.88(\mathrm{Me}),-4.4$ and $-4.7(\mathrm{SiMe})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 313.2563 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{M}+\mathrm{H}$, 313.2563)
(4R,6R)- and (4S,6R)-(2E,8Z)-Methyl 4-hydroxy-6-(tert-butyldimethylsilyloxy)tetradeca-2,8-dienoate.-A solution of the aldehyde $17(209 \mathrm{mg}, 0.67 \mathrm{mmol})$ in dry acetonotrile $(1.0 \mathrm{ml})$ was added to a stirred mixture of methyl 4-chlorophenylsulphinylacetate ($202 \mathrm{mg}, 0.871 \mathrm{mmol}$) and dry piperidine $(0.066 \mathrm{ml}, 0.67 \mathrm{mmol})$ in dry acetonitrile (1.5 ml) under an atmosphere of nitrogen. The mixture was stirred at room temperature for 8 h after which brine (5.0 ml) and ethyl acetate $(20 \mathrm{ml})$ were added. The organic phase was separated and washed with brine ($2 \times 10 \mathrm{ml}$), dried and evaporated to give a yellow oil. Chromatography [light petroleum-ethyl acetate $(5: 1 \mathrm{v} / \mathrm{v})]$ of this gave the title compounds $(190 \mathrm{mg}, 74 \%)$ in a $1: 1$ ratio as a clear oil; $R_{\mathrm{F}} 0.13$ [dichloromethane-light petroleum (3:1 v/v)]; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3472(\mathrm{OH}), 1709$ ($\mathrm{C}=\mathrm{O}$ unsat. ester) and $1656(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 6.97-6.84 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $6.10(1 \mathrm{H}, \mathrm{dt}, J 15.5$ and 1.7, 2-H), $5.54-5.39(1 \mathrm{H}$, $\mathrm{m}, 9-\mathrm{H}), 5.38-5.22(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.68-4.39(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.10-$ $3.94(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.72$ and $3.71(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{OMe})$, 3.55-3.47 $(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.40-2.18(2 \mathrm{H}, \mathrm{m}, 2 \times 7-\mathrm{H}), 2.06-1.92(2 \mathrm{H}, \mathrm{m}$, $2 \times 10-\mathrm{H}), 1.82-1.58(2 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H}), 1.31-1.12(6 \mathrm{H}, \mathrm{m}$, $2 \times 11-, 12-$ and $13-\mathrm{H}), 0.90\left(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right.$ and Me), $0.14(3 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe}$) and $0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 385.2774$. $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$ requires $M+\mathrm{H}, 385.2774$).
(4R,6R)- and (4S,6R)-(2E,8Z) Methyl 4-benzoyloxy-6-(tert-butyldimethylsilyloxy)tetradeca-2,8-dienoate 18.-Triethylamine ($0.79 \mathrm{ml}, 5.64 \mathrm{mmol}$), DMAP ($86 \mathrm{mg}, 0.71 \mathrm{mmol}$) and benzoyl chloride $(0.47 \mathrm{ml}, 4.23 \mathrm{mmol})$ were added to a stirred solution of the α, β-unsaturated esters obtained in the previous experiment ($540 \mathrm{mg}, 1.41 \mathrm{mmol}$) in dry dichloromethane under an atmosphere of nitrogen. The mixture was stirred at room temperature for 4 h after which water (4.0 ml) and ethyl acetate $(25 \mathrm{ml})$ were added. The organic phase was separated and washed with water $(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$ before being dried and evaporated to give a yellow oil. Chromatography [dichloromethane-light petroleum ($3: 1 \mathrm{v} / \mathrm{v}$)] of this gave the title compounds 18 ($652 \mathrm{mg}, 95 \%$) as a pale yellow oil; $R_{\mathrm{F}} 0.41$ and 0.32 [dichloromethane-light petroleum (3:1 $\mathrm{v} / \mathrm{v})$]; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1709(\mathrm{C}=\mathrm{O}$ aromatic ester and $\mathrm{C}=\mathrm{O}$ unsat. ester), $1662(\mathrm{C}=\mathrm{C})$ and $1599\left(\mathrm{C}=\mathrm{C}\right.$ aromatic); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 8.10-8.02 ($2 \mathrm{H}, \mathrm{m}$, Ar-H), $7.54-7.32$ ($3 \mathrm{H}, \mathrm{m}$, Ar-H), $7.00(1 \mathrm{H}$, $2 \times$ dd, $J 15.5$ and $4.0,3-\mathrm{H}), 6.00(1 \mathrm{H}$, overlapping dd, $J 15.5$ and 1.5$), 5.84-5.64(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.56-5.32(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 3.96-3.82(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.73$ and $3.71(3 \mathrm{H}, 2 \times \mathrm{s}$, OMe), 2.38-2.17 ($2 \mathrm{H}, \mathrm{m}, 2 \times 7-\mathrm{H}), 2.10-1.88(4 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H}$ and
$2 \times 10-\mathrm{H}), 1.32-1.12(6 \mathrm{H}, \mathrm{m}, 2 \times 11-, 12-$ and $13-\mathrm{H}), 0.91$ and $0.87\left(12 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right.$ and Me$), 0.08,0.06,0.01$ and -0.05 ($6 \mathrm{H}, 4 \times \mathrm{s}, \mathrm{SiMe}_{2}$) (Found: $\mathrm{M}^{+}+\mathrm{H}, 489.3036$. $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{5}$ Si requires $M+\mathrm{H}, 489.3036$).
(6R,2E,4E,8Z)-Methyl 6-(tert-Butyldimethylsilyloxy)tetra-deca-2,4,8-trienoate 19 .-A solution of compounds $18(120 \mathrm{mg}$, $0.25 \mathrm{mmol})$ in dry THF (1.0 ml) was added to a stirred mixture of tetrakis(triphenylphosphine)palladium $(14.2 \mathrm{mg}, 0.0123$ $\mathrm{mmol})$ and triethylamine ($0.017 \mathrm{ml}, 0.12 \mathrm{mmol}$) in dry THF $(1.0 \mathrm{ml})$ under an atmosphere of nitrogen. The reaction mixture was heated under reflux for 3 h and then allowed to cool to room temperature whereupon brine $(3.0 \mathrm{ml})$ and ethyl acetate $(15 \mathrm{ml})$ were added. The organic phase was separated and washed with brine (5.0 ml), dried and evaporated to give a brown oil. Chromatography [light petroleum-ethyl acetate ($45: 1 \mathrm{v} / \mathrm{v}$)] of this gave the title compound $19(68.4 \mathrm{mg}, 76 \%)$ as a clear oil; $R_{\mathrm{F}} 0.21$ [light petroleum-dichloromethane (1:1 $\mathrm{v} / \mathrm{v})] ;[\alpha]_{\mathrm{D}}^{23}-19\left(c 0.76, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1699$ $\left(\mathrm{C}=\mathrm{O}\right.$ unsat. ester), 1640 and 1615 (conj. diene); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.26(1 \mathrm{H}$, dd, $J 15.5$ and $10.9,3-\mathrm{H}), 6.31(1 \mathrm{H}$, dd, $J 15.5$ and $10.9,4-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $5.3,5-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{d}, J$ $15.5,2-\mathrm{H}), 5.53-5.27(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 4.29-4.19(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.35-2.19(2 \mathrm{H}, \mathrm{m}, 2 \times 7-\mathrm{H}), 2.04-$ $1.93(2 \mathrm{H}, \mathrm{m}, 2 \times 10-\mathrm{H}), 1.40-1.10(6 \mathrm{H}, \mathrm{m}, 2 \times 11-, 12-$ and $13-$ $\mathrm{H}), 0.82\left(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right.$ and Me), $0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and 0.03 (3 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 167.4(\mathrm{C}=\mathrm{O}$ ester), $145.8(\mathrm{CH}, \mathrm{C}-5), 144.3$ (CH, C-3), 132.5 and $124.4(\mathrm{CH}), 126.7(\mathrm{CH}, \mathrm{C}-4), 120.5(\mathrm{CH}, \mathrm{C}-$ 2), $72.5(\mathrm{CH}, \mathrm{C}-6), 51.4$ (OMe), 36.0, 31.5, 29.2, 27.4 and 22.5 $\left(\mathrm{CH}_{2}\right), 25.8(3 \times \mathrm{SiMe}), 18.2(\mathrm{C}), 13.9(\mathrm{Me}),-4.6$ and -4.8 (SiMe) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 384.2934 . \mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires $M+\mathrm{NH}_{4}, 384.2934$).
(6R,2E,4E,8Z)-6-(tert-Butyldimethylsilyloxy)tetradeca-2,4,8-trien-1-ol.-A solution of aluminium hydride in THF ($0.5 \mathrm{M} ; 1.5$ $\mathrm{ml}, 0.75 \mathrm{mmol})^{10}$ was added dropwise to a stirred solution of the ester 19 ($370 \mathrm{mg}, 1.01 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After 2 h phosphate buffer ($\mathrm{pH} 7.0,15 \mathrm{ml}$) was added and the reaction mixture was extracted with ethyl acetate $(3 \times 25 \mathrm{ml})$. The organic layer was washed with brine $(10 \mathrm{ml})$, dried and evaporated to give the title alcohol ($290 \mathrm{mg}, 85 \%$) as a clear oil; $R_{\mathrm{F}} 0.5$ [light petroleum ($60-80$)-ethyl acetate $(9: 1$ $\mathrm{v} / \mathrm{v})] ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3330(\mathrm{OH})$ and 1640 and 1610 (diene); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.2(2 \mathrm{H}, \mathrm{m}), 5.75(2 \mathrm{H}, \mathrm{m}), 5.4(2 \mathrm{H}, \mathrm{m}), 4.2$ and $4.15(3 \mathrm{H}, \mathrm{d}$ and m$), 2.3(2 \mathrm{H}, \mathrm{m}), 1.95(2 \mathrm{H}, \mathrm{m}), 1.40-1.35(7 \mathrm{H}$, $\mathrm{m}), 0.9$ and $0.85(12 \mathrm{H}, \mathrm{s}$ and t$), 0.15$ and $0.1(6 \mathrm{H}, 2 \mathrm{~s})$.
(6R,2E,4E,8Z)-1-Bromo-6-(tert-butyldimethylsilyloxy)-2,4,8tetradecatriene 20.-Triphenylphosphine ($0.433 \mathrm{~g}, 1.646 \mathrm{mmol}$) was added portionwise to a stirred mixture of the alcohol (280 $\mathrm{mg}, 0.86 \mathrm{mmol}$) and carbon tetrabromide ($548 \mathrm{mg}, 1.64 \mathrm{mmol}$) in dry dichloromethane $(3.0 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ for 30 min . The solvent was evaporated and chromatography (hexane-ethyl acetate $(19: 1 \mathrm{v} / \mathrm{v})]$ of the residue gave the bromide $\mathbf{2 0}(130 \mathrm{mg}$, 38%) plus recovered starting material; $R_{\mathrm{F}} 0.85$ [hexane-ethyl acetate $(19: 1 \mathrm{v} / \mathrm{v})] ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640$ and 1610 (diene); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.3(2 \mathrm{H}, \mathrm{m}), 5.75(2 \mathrm{H}, \mathrm{m}), 5.35(2 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}$, $\mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{d}), 2.25(2 \mathrm{H}, \mathrm{m}), 2.0(2 \mathrm{H}, \mathrm{m}), 1.4-1.2(6 \mathrm{H}, \mathrm{m})$, 0.90 and $0.85(12 \mathrm{H}$, s and t$), 0.1$ and $0.05(6 \mathrm{H}, 2 \mathrm{~s})$.
(6R,2E,4E,8Z)-6-(tert-Butyldimethylsilyloxy)tetradeca-2,4,8trienyltriphenylphosphonium Bromide 21.-Triphenylphosphine ($105 \mathrm{mg}, 0.40 \mathrm{mmol}$) was added to a stirred solution of the bromide $20(110 \mathrm{mg}, 0.274 \mathrm{mmol})$ in dry acetonitrile $(3.0 \mathrm{ml})$ at room temperature. After 2 h the solvent was evaporated and chromatography [dichloromethane-methanol (99:1 v/v \longrightarrow $9: 1 \mathrm{v} / \mathrm{v})$] of the residue gave the title compound $21(140 \mathrm{mg}, 80 \%$) as a colourless foam; $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.9-7.6(15 \mathrm{H}, \mathrm{m}), 6.5-6.25$
(1 H, m), 6.1-5.9 (1 H, dd), $5.55(1 \mathrm{H}, \mathrm{m}), 5.5-5.2(3 \mathrm{H}, \mathrm{m}), 5.0-$ $4.8(2 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{m}), 2.3-2.1(2 \mathrm{H}, \mathrm{m}), 2.0-1.9(2 \mathrm{H}, \mathrm{m})$, 1.4-1.2 $(6 \mathrm{H}, \mathrm{m}), 0.90$ and $0.85(12 \mathrm{H}, \mathrm{t}$ and s$), 0.08$ and 0.05 ($6 \mathrm{H}, 2 \mathrm{~s}$).
(5S,12R,6Z,8E,10E,14Z)-Ethyl 5-Benzoyloxy-12-(tert-butyl-dimethylsilyloxy)icosatetra-6,8,10,14-enoate 22.-A solution of butyllithium ($1.6 \mathrm{M} ; 0.137 \mathrm{ml}, 0.22 \mathrm{mmol}$) in hexane was added to a stirred solution of the phosphonium salt ($140 \mathrm{mg}, 0.22$ mmol) in dry THF at $-78^{\circ} \mathrm{C}$ over 2 min . The resulting dark red solution was stirred for 20 min after which HMPA (265 mg , 1.46 mmol) was added. After 5 min a solution of the aldehyde 9 $(60 \mathrm{mg}, 0.225 \mathrm{mmol})$ in dry THF (2.0 ml) was added dropwise over 4 min. Stirring was continued at $-78^{\circ} \mathrm{C}$ for 20 min after which the temperature was allowed to rise to $-40^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . The mixture was allowed to warm to $10^{\circ} \mathrm{C}$ after which aqueous ammonium acetate ($20 \% \mathrm{w} / \mathrm{v} ; 5.0 \mathrm{ml}$) was added and the mixture was extracted with ether $(3 \times 25 \mathrm{ml})$. The combined organic fractions were washed with brine (25 ml), dried and evaporated; $R_{\mathrm{F}} 0.45$ and 0.5 [ethyl acetate-triethylamine--hexane (10:5:85 $\mathrm{v} / \mathrm{v})]$ corresponding to fully protected leukotriene- B_{4} and $(6 E)$ -leukotriene- B_{4}; preparative HPLC [ethyl acetate-triethylaminehexane ($1: 1: 98 \mathrm{v} / \mathrm{v}$)] using a flow rate of $3 \mathrm{ml} \mathrm{min}^{-1}$ and a 10 $\mathrm{mm} \times 25 \mathrm{~cm}$ Rainin Dynamax column $5 \mu \mathrm{~m}$ silica (Microsorb) gave the E-isomer ($26 \mathrm{mg}, 21 \%, R_{\mathrm{t}} 10.7 \mathrm{~min}$) and the required Z-isomer $22\left(55 \mathrm{mg}, 43 \%, R_{\mathrm{t}} 9.2 \mathrm{~min}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.05(2 \mathrm{H}$, d), $7.6-7.4(3 \mathrm{H}, \mathrm{m}), 6.7-6.1(4 \mathrm{H}, 2 \mathrm{~m}), 5.95-5.85(1 \mathrm{H}, \mathrm{m})$, 5.75-5.65 (1 H, m), 5.5-5.3 (3 H, m), 4.25 and $4.14(4 \mathrm{H}, \mathrm{m}$ and q), 2.35-2.25 ($2 \mathrm{H}, \mathrm{m}$), 2.1-1.9 ($2 \mathrm{H}, \mathrm{m}$), 1.8-1.7 ($2 \mathrm{H}, \mathrm{m}$), 1.45$1.2(12 \mathrm{H}, \mathrm{t}$ and m$), 0.88$ and $0.85(12 \mathrm{H}, \mathrm{s}$ and t$), 0.05$ and $0.02(6$ H, 2 s).
(5S,12R,6Z,8E,10E,14Z)-Ethyl 5-benzoyloxy-12-hydroxyico-satetra-6,8,10,14-enoate.-A solution of $\mathrm{Bu}_{4} \mathrm{NF}(1.0 \mathrm{~m} ; 0.8 \mathrm{ml}$, $0.8 \mathrm{mmol})$ in THF was added to a stirred solution of $22(50 \mathrm{mg}$, $0.095 \mathrm{mmol})$ in dry THF $(20 \mathrm{ml})$ at room temperature. The reaction mixture was stirred for 4 h after which brine $(2.0 \mathrm{ml})$ was added and the mixture was extracted with ether $(2 \times 20$ ml); the combined ether fractions were dried and evaporated to give the title compound ($40 \mathrm{mg}, 92 \%$); $R_{\mathrm{F}} 0.15$ [ethyl acetate-triethylamine-hexane $(10: 5: 85 \mathrm{v} / \mathrm{v})] ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.05(2 \mathrm{H}$, d), 7.7-7.3 ($3 \mathrm{H}, \mathrm{m}$), $6.65(1 \mathrm{H}, \mathrm{dd}), 6.45-6.15(2 \mathrm{H}, \mathrm{m}), 6.0-5.85$ $(1 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{dd}), 5.65-5.25(3 \mathrm{H}, \mathrm{m}), 4.30-4.15(4 \mathrm{H}$, m and q$), 2.35-2.25(2 \mathrm{H}, \mathrm{m}), 1.95-1.5(15 \mathrm{H}, \mathrm{m}), 1.05(3 \mathrm{H}, \mathrm{m})$ and $0.85(3 \mathrm{H}, \mathrm{m})$.
(5S,12R,6Z,8E,10E,14Z)-Dihydroxyicosatetra-6,8,10,14-enoic acid 1.-Potassium carbonate was added to a solution of the diester ($40 \mathrm{mg}, 0.088 \mathrm{mmol}$) obtained in the previous experiment
in methanol (3.0 ml) and water $(0.5 \mathrm{ml})$ at room temperature and the reaction mixture was stirred overnight. Most of the methanol was evaporated whereupon acetic acid $(0.16 \mathrm{ml})$ was added and the solution became cloudy. A few drops of methanol were added and the solution became clear. This solution was subjected to HPLC [methanol-water-acetic acid (80:20:0.1 $\mathrm{v} / \mathrm{v})$] using a flow rate of $3 \mathrm{ml} \mathrm{min}{ }^{-1}$ and a $10 \mathrm{~mm} \times 25 \mathrm{~cm}$ Rainin Dynamax $5 \mu \mathrm{~m}$ C18 column and gave leukotriene- B_{4} ($10.1 \mathrm{mg}, R_{\mathrm{t}} 12 \mathrm{~min}$), purity $>99 \%$ which was identical (by NMR and HPLC analysis) to samples of authentic leukotrieneB_{4} (available from Salford Ultrafine Chemicals and Research Ltd.).

References

P. Borgeat and P. H. Naccache, Clin. Biochem., 1990, 23, 459; R. A. Lewis, K. F. Austen and R. J. Soberman, New England J. Med., 1990, 323, 645; R. I. Sperling, J. S. Coblyn, J. K. Larkin, A. I. Benincaso, K. F. Austen and M. E. Weinblatt, Arthritis Rheum., 1990, 38, 1149 ; Y. Hamasaki and S. Miyasaki, Jap. J. Allergol., 1990, 39, 354; P. Borgeat and P. H. Naccache, Clin. Biochem., 1990, 23, 459.
2 B. Odlander, J. Jakobsen, J. F. Medina, O. Radmark, K. A. Yamaoka, A. Rosen and H. E. Claesson, Int. J. Tissue React., 1989, 11, 277.
3 J. M. Davis, J. D. Meyer, P. S. Barie, R. W. Yurt, R. Duhaney, P. Dineen and G. T. Shires, Surg. Gynecol. Ogstet., 1990, 170, 495.
4 I. E. El Hakim, J. D. Langdon, J. T. Zakrzewski and J. F. Costello, Br. J. Oral Maxillofac. Surg., 1990, 28, 155.

5 Y. Kobayashi, T. Shimazaki, H. Taguchi and F. Sato, J. Org. Chem., 1990, 55, 5324; R. Hayes and T. W. Wallace, Tetrahedron Lett., 1990, 31, 3355 and references therein.
6 D. J. Fretland, S. Levin, B. S. Tsai, S. W. Djuric, D. L. Widomski, J. M. Zemaitis, R. L. Shone and R. F. Bauer, Agents and Actions, 1989, 27, 395; D. M. Gapinski, B. E. Mallett, L. L. Froelich and W. T. Jackson, J. Med. Chem., 1990, 33, 2798; J. L. Wallace and C. M. Keenan, Am. J. Physiol., 1990, 258, G527.
7 Preliminary communication I. C. Cotterill, G. Dorman, K. Faber, R. Jaouhari, S. M. Roberts, F. Scheinmann, J. Spreitz, A. G. Sutherland, J. A. Winders and B. J. Wakefield, J. Chem. Soc., Chem. Commun., 1990, 1661.
8 M. Rey, S. M. Roberts, A. Dieffenbacher and A. S. Dreiding, Helv. Chim. Acta, 1970, 43, 417.
9 H. G. Davies, S. M. Roberts, B. J. Wakefield and J. A. Winders, J. Chem. Soc., Chem. Commun., 185, 1166.
10 N. M. Yoon and H. C. Brown, J. Am. Chem. Soc., 1968, 90, 2927.
11 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
12 S. Butt, H. G. Davies, M. J. Dawson, G. C. Lawrence, J. Leaver, S. M. Roberts, M. K. Turner, B. J. Wakefield, W. F. Wall and J. A. Winders, J. Chem. Soc., Perkin Trans. 1, 1987, 903.
13 J. P. Vigneron, R. Meric, M. Larcheveque, A. Debal, J. Y. Lallemand, G. Kunesch, P. Zagatti and M. Gallois, Tetrahedron, 1984, 40, 3521.

Paper 1/01258D
Received 18th March 1991
Accepted 16th May 1991

